Вторник, 14.05.2024, 18:16
Приветствую Вас Гость | Регистрация | Вход

Все для тебя ищущий!

Меню сайта
[03.08.2015][Человек]
Кровеносная система (0)
[03.08.2015][Животные]
Моллюск (0)
[03.08.2015][Растения]
Генеративные органы растений (0)
[03.08.2015][Генетика]
Геномные мутации (0)
[03.08.2015][Экология]
Понятия об адаптивных типах. Характеристика основных адаптивных типов. (0)
Категории раздела
Биологические основы жизни [23]
Генетика [47]
Медицинская паразитология [27]
Экология [18]
Дополнительно для ЕГЭ [4]
Растения [6]
Животные [9]
Человек [8]
Вход на сайт
Поиск
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0

Web366.ru - Помощь и советы вебмастеру

 Создание сайта

 Оптимизация и продвижение сайта

Учебные материалы

Главная » Статьи » Биология » Биологические основы жизни

Генетический материал

Строение гена. Классификация генов.

Фундаментальным понятием в генетике является представление о гене как единице наследственности. Ниже приводится два определения гена.

Ген - это участок ДНК, коллинеарно кодирующий определённый белковый или нуклеиновый продукт

Ген - это фрагмент 2-цепочечной ДНК, несущей определённую генетическую информацию.У кишечной палочки имеется 4 тыс. генов, у дрожжей - 7 тыс. генов, а у дрозофилы и плоских червей -15-20 тысяч генов,У человека имеется приблизительно от 50 тысяч до 100 тысяч структурных генов, по данным на 1989 год около 5 тысяч генов были приблизительно охарактеризованы, а около 2 тысяч генов были нанесены на карты хромосом (картированы).26 июня 2000 года в прессе было сделано сообщение о том, что учеными США, Англии, Японии и других стран, участвующими в программе «Геном человека», завершена основная часть работы (более 90%) по расшифровке генетического кода человека. В ближайшие 2 года планируется уточнить и завершить работу по данной программе, которая имеет важное прикладное значение для медицины.В плане данной темы важно помнить, что ген занимает определённый участок (локус) в хромосоме, это участок ДНК, который может быть представлен десятками, сотнями или тысячами пар нуклеотидов.

В настоящее время, с функционально-генетической точки зрения, гены классифицируют на 3 группы:

  • Структурные гены - кодируют структуру синтезируемых клеткой белков (структурных белков, белков-ферментов и др.), а также кодируют последовательности нуклеотидов в молекулах т-РНК и р-РНК.
  • Регуляторные (функциональные) гены - контролируют и направляют работу структурных генов.
  • Гены-модуляторы. К ним относятся гены-ингибиторы (или супрессоры), которые подавляют функции других генов, гены-интенсификаторы, которые усиливают функции других генов и др

 Экзонно-интронная структура генов.

В 70-х годах XX века было обнаружено, что структурные гены эукариот содержат экзоны (участки ДНК, несущие генетическую информацию и отвечающие за синтез определенных участков белков) и интроны (участки ДНК, которые не несут генетической информации, относящейся к синтезу белка, кодируемого данным геном). Интроны ещё называют вставками, расположенными между экзонами. Таким образом, принципиальным отличием генов эукариот от генов прокариот является то, что их структурные гены имеют разорванную, прерывистую структуру. Однако исключение составляют гены, кодирующие гистоны и интерфероны, они не содержат интронов. Дальнейшие исследования показали, что большинство генов эукариот имеют экзон-интронную организацию. Длина интронов варьирует в очень широких пределах: от 100 до 10000 нуклеотидов и более, нередко их суммарная длина больше длины экзонов. Количество интронов и экзонов в разных генах варьирует. Один из самых коротких - ген бета-глобина, состоящий из 1100 пар нуклеотидов (пн), содержит 3 экзона (90, 222, 126 пн) и 2 интрона (116, 646 пн). Примером протяженного гена служит ген дистрофина, имеющий 2,6 млн пн и более 2000 экзонов.

Представление, что интроны - нефункциональная часть гена, - неверно. И хотя детально их биологическая роль не выяснена, существует ряд гипотез о значении интронов:

1)Строение генов из участков выгодно для процессов генетической рекомбинации, перетасовки генов. Чем дальше в хромосоме расположены фрагменты генетического материала, тем выше вероятность рекомбинации. Именно поэтому и выгодны вставки-интроны. Нуклеотидная последовательность интронов менее консервативна, чем у экзонов, она подвергается быстрым изменениям в эволюции.

Перетасовка частей генов может быть использована для разных целей:

  • это путь к образованию новых генов;
  • это способ нейтрализации вредных мутаций.

2)     Предполагается регуляторная роль интронов в экспрессии (работе) генов. Интроны могут содержать энхансеры. Они могут кодировать особый фермент, который участвует в сплайсинге м-РНК (смотри следующий вопрос). Заканчивая разговор о гене, необходимо отметить ещё одно обстоятельство. У эукариот гены разделены между собой протяженными участками ДНК, которые были названы спейсерами, или разделителями. Накапливается всё более данных, что именно в спейсерах располагаются те сегменты ДНК, которым принадлежит решающая роль в регуляции работы генов (в регуляции транскрипции).

Регуляиия биосинтеза белка у прокариот (на примере работы лактозного оперона кишечной папочки).

 Все клетки любого организма имеют полный набор свойственных данному организму генов. Вместе с тем известно, что клетки разных тканей и органов отличаются по набору имеющихся в них белков. Располагая полной генетической информацией, каждая клетка на определенном этапе развития использует лишь ту её часть, которая необходима в настоящий момент, транскрибируются («работают») только те гены, продукты которых нужны клетке в данный момент для выполнения её функций. Следовательно, клетка должна обладать механизмами, определяющими какие гены и в какой последовательности должны транскрибироваться. Наиболее полно регуляция генной активности изучена на примерах синтеза белков-ферментов у микроорганизмов.

Теория регуляции биосинтеза белка у прокариот разработана в 50-х годах XX века французскими учеными Ф.Жакобом и Ж.Моно. Они разработали концепцию опреона и выяснили основные принципы регуляции биосинтеза белка у прокариот.Согласно теории Ф.Жакоба и Ж.Моно, гены функционально неодинаковы : выделяют группу структурных генов (они кодируют структуру синтезируемых клеткой попипептидов, белков, р-РНК, т-РНК) и группу регуляторных генов (они управляют работой структурных генов обычно с помощью присоединения к ним различных белковых факторов).

Единицей генетической регуляции является оперон, который представляет собой совокупность расположенных е линейной последовательности регуляторных и одного или нескольких структурных генов. Гены одного оперона расположены в хромосоме прокариот рядом и кодируют ферменты, осуществляющие последовательные реакции синтеза или расщепления. Эти гены находятся под общим регуляторным контролем и могут включаться и выключаться координированно. Одним из наиболее наглядных и хорошо изученных примеров является лактозный оперон кишечной палочки (Escherichia coli) -- группа генов, контролирующая синтез ферментов, осуществляющих катаболизм молочного сахара - лактозы. Буквально через несколько минут после добавления в питательную среду для кишечной палочки лактозы, бактерии начинают вырабатывать 3 фермента: галактозидпермеазу, бетагалактозидазу и галактоэидтрансацетилазу. Как только ресурсы лактозы в среде исчерпываются, синтез ферментов сразу же прекращается.

Строение лактозного оперона кишечной палочки :

1. Начинается оперон с участка А - он предназначен для присоединения белка-активатора (синий круглешок), в свою очередь необходимого для присоединения к следующему участку фермента (РНК-полимеразы).

2. Следующий участок П (промотор) - место прикрепления фермента РНК-полимеразы (зеленый треугольник), это участок начала транскрипции.

3. За промотором следует О (оператор) - он играет важную роль в транскрипции генов оперона, т.к. с ним может прикрепляться регуляторный белок-репрессор(красн 2 треугольника)

4. За оператором следуют структурные гены (z, у, а), которые кодируют построение 3-х упомянутых ранее белков-ферментов.

5. Заканчивается оперон Т (терминатором) - участком, прекращающим продвижение РНК-полимеразы и транскрипции оперона.

6. Основная регуляция работы структурных генов осуществляется регуляторным белком(красн 2 треугольн) который кодируется Р (геном-регулятором), который не входит в состав оперона, а лежит поблизости в другом месте хромосомы.

Работа лактозного оперона Регуляторный белок-репрессор в незначительном количестве синтезируется в клетке постоянно. Этот белок обладает сродством к последовательности нуклеотидов в области оператора, а также сродством к лактозе.

Репрессия : В отсутствие лактозы регуляторный белок связывается с участком-оператором (О) и препятствует продвижению по ДНК РНК-полимеразы: не синтезируется м-РНК, не синтезируются и белки-ферменты.

Индукция: После добавления в среду лактозы, регуляторный белок связывается с ней быстрее, чем с участком-оператором, который остаётся свободным и не препятствует продвижению РНК-полимеразы. Идёт транскрипция и трансляция. Синтезирующие белки-ферменты расщепляют лактозу. После того, как вся лактоза будет израсходована, нечем будет связывать регуляторный белок и он снова окажется с О (оператором), прекратив транскрипцию оперона.

Другой известный тип индукции - позитивная индукция. Она свойственна другому оперону кишечной палочки, кодирующему ферменты катаболизма другого сахара -арабинозы. Этот оперон структурно очень похож на предыдущий. Разница в регуляции состоит в том, что добавленная в среду арабиноза взаимодействует с белком-репрессороми, освобождая операторный участок, одновременно превращает белок-репрессор в белок-активатор, способствующий. присоединению РНК-полимеразы к промотору. В этих условиях транскрипции имеет место. Как только запасы арабинозы в среде исчерпываются, синтезирующийся белок-репрессор опять связывается с оператором, выключая транскрипцию. Кроме индукции, известны также 2 типа (негативный и позитивный) регуляции по принципу репрессии. Если при негативной индукции эффектор (индуктор) препятствует присоединению белка-репрессора к оператору, то при негативной репрессии, наоборот, эффектор придаёт регуляторному белку способность присоединяться к оператору. Если в первом случае соединение эффектора с белком-регулятором разрешало транскрипцию, то во втором оно запрещает её. Примером негативной репрессии может служить хорошо изученный триптофановый оперон кишечной палочки. В его состав входят пять структурных генов, обеспечивающих синтез аминокислоты триптофана, оператор и два промотора. Белок-регулятор синтезируется вне триптофонового оперона. Пока клетка успевает расходовать весь синтезирующийся триптофан, оперон работает, синтез триптофана продолжается. Если же в клетке появляется избыток триптофана, он соединяется с регуляторным белком и изменяет его таким образом, что этот белок приобретает сродство с оператором.  Измененный  белок-регулятор взаимодействует с оператором и препятствует транскрипции структурных генов вследствии чего синтез триптофана прекращается. При позитивной репрессии эффектор лишает регуляторный белок способности связываться с оператором, обуславливая таким образом, транскрипцию структуоных генов. Описанные типы регуляции характеризуют механизмы регуляции отдельных оперонов, практически не касаясь регуляции экспрессии генома в целом, в то время как совершенно очевидно, что регуляция разных оперонов должна носить согласованный характер. Такой согласованный характер работы разных оперонов и генов получил у вирусов и фагов название каскадной регуляции. Согласно принципу каскадной регуляции, сначала происходит транскрипция «предранних», затем «ранних» и наконец «поздних» генов, в зависимости от того, какие белки требуются на разных стадиях вирусной (фаговой) инфекции. Конечно, принцип каскадной регуляции у фагов относится к наиболее простым. У более сложно организованных организмов для осуществления большого количества функций, происходящих одновременно или с определённой последовательностью, необходима согласованная работа многих генов и оперонов, Особенно это касается эукариотов, отличающихся не только более сложной организацией генома, но и многими другими особенностями механизмов регуляции генной активности. По принципам регуляции гены эукариотов можно условно разделить на 3 группы : 1) функционирующие во всех клетках организма; 2) функционирующие в тканях только одного типа; 3) обеспечивающие  выполнение  специализированными   клетками   конкретных функций. Кроме того, у эукариотов известно одновременное групповое выключение генной активности, осуществляемое гистонами - основными белками, входящими в состав хромосом. Ещё одним существенным отличием транскрипции у эукариотов является то, что многие м-РНК длительное время сохраняются в клетке в виде особых частиц -информосом, в то время как м-РНК прокариотов практически ещё в процессе транскрипции поступают в рибосомы, транслируются, после чего быстро разрушаются.

Вместе с тем, имеется много данных, указывающих, что транскрипция у эукариотов осуществляется с участков, подобных оперонам прокариотов и состоящих из регуляторных и структурных генов. Отличительной особенностью оперонов эукариотов является то, что почти всегда они содержат только структурный ген, а гены, контролирующие различные этапы определённой цепи метаболических превращений! разбросаны по хромосоме и даже по разным хромосомам. Другой отличительной чертой оперонов эукариотов является то, что они состоят из значащих (экзонов) и незначащих (интронов) участов. чередующихся друг с другом. При транскрипции считываются как экзоны, так и интроны, а образующийся при этом предшественник информационной РНК (про-мРНК) затем претерпевает созревание (процессинг), в результате которого происходит вырезание интронов и образование собственно м-РНК (сплайсинг). У эукариотов известны и другие типы регуляции активности генов, такие как эффект положения или дозовая компенсация. В первом случае речь идёт об изменении генной активности е зависимости от конкретного окружения: перемещение гена из одного места хромосомы в другое может приводить к изменению активности как этого гена, так и близлежащих. Во втором случае, нехватка одной дозы какого-либо гена (в первую очередь это относится к генам, локализованным в половых хромосомах гетерогаметного пола, когда одна из гомологичных половых хромосом либо генетически инертна, либо полностью отсутствует) фенотипически не проявляется за счет компенсаторного увеличения активности оставшегося гена, В целом же, регуляция активности генов у эукариотов изучена недостаточно.

Категория: Биологические основы жизни | Добавил: darkdi123 (02.08.2015)
Просмотров: 3736 | Рейтинг: 0.0/0
Всего комментариев: 0
avatar
Copyright MyCorp © 2024
uCoz